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Abstract
Our environment is filled with rich and dynamic
acoustic information. When we walk into
a cathedral, the reverberations as much as
appearance inform us of the sanctuary’s wide
open space. Similarly, as an object moves around
us, we expect the sound emitted to also exhibit
this movement. While recent advances in learned
implicit functions have led to increasingly higher
quality representations of the visual world, there
have not been commensurate advances in learning
spatial auditory representations. To address
this gap, we introduce Neural Acoustic Fields
(NAFs), an implicit representation that captures
how sounds propagate in a physical scene. By
modeling acoustic propagation in a scene as
a linear time-invariant system, NAFs learn to
continuously map all emitter and listener location
pairs to a neural impulse response function
that can then be applied to arbitrary sounds.
We demonstrate that the continuous nature of
NAFs enables us to render spatial acoustics
for a listener at an arbitrary location, and can
predict sound propagation at novel locations.
We further show that the representation learned
by NAFs can help improve visual learning
with sparse views. Finally we show that a
representation informative of scene structure
emerges during the learning of NAFs. Project
site: andrew.cmu.edu/user/afluo/
Neural_Acoustic_Fields/

1. Introduction
The sound of the ball leaving the bat, as much as its visible
trajectory, tells us whether the hit is likely to be a home
run or not. Our experience of the world around us is rich
and multimodal, depending on integrated input from multi-
ple sensory modalities. In particular, spatial acoustic cues
provide us with a sense of the direction and distance of a
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Figure 1. Neural Acoustic Field (NAF) learns an implicit repre-
sentation for acoustic propagation. (a) A 3D top-down view of
the house with two rooms. (b) Floor of the rooms shown in grey.
(c)-(f) The loudness of acoustic field as predicted by our NAF
is visualized for an emitter located at the red dot. Notice how
sound does not leak through walls, and the portaling effect open
doorways can have. Louder regions are shown in yellow.

sound source without needing visual confirmation, allow
us to estimate the properties of a surrounding environment,
and are critical to subjective realism in gaming and virtual
simulations.

Recent progress in implicit neural representations has en-
abled the construction of continuous, differentiable repre-
sentations of the visual world directly from raw image ob-
servations (Sitzmann et al., 2019; Mildenhall et al., 2020;
Niemeyer et al., 2020; Yariv et al., 2020). These models typ-
ically utilize a neural renderer in combination with a learned
implicit representation to jointly capture and render images
of a scene. By leveraging the multiview consistency be-
tween visual observations, these methods can infer images
of the same scene from novel viewpoints.

However, our perception of the physical world is informed
not only by our visual observations, but also by the spatial
acoustics cues present in the environment. As a preliminary
step in learning the acoustic properties of scenes, we explore
an implicit model that represents the magnitude of the under-
lying impulse response of audio reverberations. As shown
in Figure 1, our model can model the spatial propagation of
sound in a physical scene.

Past work has explored capturing the underlying acoustics
of a scene (Raghuvanshi & Snyder, 2014; 2018; Chaitanya
et al., 2020). These models, however, require manually de-
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signing acoustic functions which, critically, prevent such
approaches from being applied to arbitrary scenes. In this
work, we extend this approach by constructing an implicit
neural representation which captures, in a generic manner,
the underlying acoustics of a scene. In particular, following
(Raghuvanshi & Snyder, 2014), we define the acoustic mod-
eling problem as modeling the impulse-response a listener
receives given a sound emitted at an emitter location (as il-
lustrated in Figure 1) and across all possible emitter-listener
pairs in a scene. This learned representation inherently cap-
tures the pattern of all acoustic reverberations in a scene.
Because a complete field of acoustic reverberations of a
complex scene can be hundreds of gigabytes in size, the
compact and continuous nature of our learned representa-
tion enables useful virtual reality and gaming applications.

Learning a representation of scene acoustics poses several
challenges compared to the visual setting. First, how do we
generate plausible audio impulse responses at each emitter-
listener position? While we may represent the visual ap-
pearance of a scene with an underlying three-dimensional
vector, an acoustic reverberation (represented as an impulse
response) can consist of over 20000 values and, thus, is
significantly harder to capture. Second, how do we learn an
acoustic neural representation that densely generalizes to
novel emitter-listener locations? In the visual setting, ray-
tracing can enforce view consistency across large portions
of a visual scene (modulo occlusions). While in principle,
in a similar manner, we may reflect acoustic ”rays” in our
scene to obtain an impulse response, a intractable number
of rays are necessary to obtain the desired representation.

To address both challenges, we propose Neural Acous-
tic Fields (NAFs). To capture the complex signal repre-
sentation of impulse responses, NAFs encode and repre-
sent an impulse-response in the Fourier frequency domain.
Motivated by the strong influence of nearby geometry on
anisotropic reflections (Raghuvanshi & Snyder, 2018), we
propose to condition NAFs on local geometric informa-
tion present at both the listener and emitter locations when
decoding the impulse response. In our framework, local
geometric information is learned directly from impulse re-
sponses. Such a decomposition facilitates the transfer of
local information captured from training emitter-listener
pairs to novel combinations of emitters and listeners

By modeling the dense acoustic fields of an environment,
NAFs learns a useful representation that enables us to extract
structural information about the scene. In the cross-modal
setting, we demonstrate how the learned acoustic structure
can be utilized to aid learned visual representations, improv-
ing novel view synthesis. Further, by directly utilizing the
learned latent representation in our NAFs, we demonstrate
how one can infer the structure of a scene.

In summary, we present Neural Acoustic Fields (NAFs), a

neural implicit field which captures the underlying acoustics
of a scene in a compact and spatially continuous fashion.
We show that NAFs are able to outperform baselines in
modeling scene acoustics, and provide detailed analysis
of the design choices in NAFs. We further illustrate how
the structure learned by NAFs can improve cross-modal
generation of novel visual views of a scene. Finally, we
illustrate how the learned representation of NAFs enable the
downstream application of inferring scene structure.

2. Related Work
Audio Field Coding There is a rich history of encoding
methods for 3D spatial audio. These approaches largely fall
into two categories. The first approach encodes the sound
field at a user-centric location by capturing the sound from
spatially distributed sources (Gerzon, 1973; Breebaart et al.,
2005; Pulkki, 2007; Richard et al., 2021). While they may
leverage perceptual cues to create the sense of spatial audio,
they do not allow the listener to freely traverse the scene
and experience sound from different locations. The second
approach aims to model the sound heard as a listener moves
in a scene (Raghuvanshi & Snyder, 2014; Mehra et al.,
2014; Raghuvanshi & Snyder, 2018; Chaitanya et al., 2020;
Ratnarajah et al., 2021). Since the complete acoustic field
of a scene is computationally prohibitive to simulate in real
time, and expensive to store in full fidelity, these methods
have relied on a handcrafted encoding of the acoustic field,
prioritizing efficiency above reproduction fidelity. Our work
allows a listener to move and experience sounds that come
from anywhere in a scene, and can represent the acoustic
field continuously at high fidelity by directly learning from
data.

Implicit representations Our approach towards modeling
the underlying acoustics a scene relies on the use of a neu-
ral implicit representations. Implicit representations have
emerged as a promising representation of 3D geometry
(Niemeyer et al., 2019; Chen & Zhang, 2019; Park et al.,
2019; Saito et al., 2019) and appearance (Sitzmann et al.,
2019; Mildenhall et al., 2020; Niemeyer et al., 2020; Yariv
et al., 2020) of a scene. Compared to traditional discrete
representations, implicit representations are a continuous
mapping capable of capturing data at an ”infinite resolution”.
(Jiang et al., 2020) proposed a grid based representation for
implicit scene reconstruction, while more recently (DeVries
et al., 2021) has adopted spatial conditioning for 3D image
synthesis, where in both settings, the grid enables a higher-
fidelity encoding of the scene. Our work also leverages local
grids to model acoustics, but as an inductive bias and way
to generalize to novel inputs.

Audio-Visual Learning Our work is also closely related
to joint modeling of vision and audio. By leveraging the
correspondence between vision and audio, work has been
done to learn unsupervised video and audio representations
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Figure 2. Overview of our NAF architecture. Given a listener position and an emitter location, we first query a grid for local features
which are learned together with the network during training. We compute the sinusoidal embedding of the positions, frequency, and time,
and query a discrete embedding matrix using the orientation and left/right ear. These features are fed to an implicit decoder. Our method
is trained with a MSE loss with impulse responses.

(Aytar et al., 2016; Arandjelovic & Zisserman, 2017), lo-
calize objects that emit sound (Senocak et al., 2018; Zhao
et al., 2018; 2019; Gan et al., 2020a), and jointly use vi-
sion and audio for navigation (Chen et al., 2020; Gan et al.,
2020b; 2021). Recent work aims to propose plausible rever-
berations or sounds from image input (Singh et al., 2021;
Du et al., 2021), these approaches model the phase-free
log-magnitude STFT using either convolution or implicit
functions, which we also utilize. Different from them, our
work leverages the geometric features learned by modeling
acoustic fields to improve the learning of 3D view genera-
tion.

3. Methods
We are interested in learning a generic acoustic represen-
tation of an arbitrary scene, which can capture the under-
lying sound propagation of arbitrary sound sources across
both seen and unseen locations in a scene. We first review
relevant background information towards modeling envi-
ronment reverberations. We then describe Neural Acoustic
Fields (NAFs), a neural field which we show can capture,
in a generic manner, the acoustics of arbitrary scenes. We
further discuss how we can parameterize NAF in a man-
ner so that it can capture acoustics property even at unseen
sound sources and listener positions. Finally, we discuss the
underlying implementation details of our model.

3.1. Background on Environmental Reverberation

The sound emitted by a sound source undergoes decay, oc-
clusion, and scattering due to both the geometric and mate-
rial properties of a scene. For a fixed location pair (q, q′),
we define the impulse-response at a listener position q, as
the sound pressure p(t; q, q′) induced by an impulse at q′.
Such behavior can be concisely and elegantly modeled uti-
lizing the linear wave equation (Pierce, 2019):

[
1

c2
∂2

∂t2
−∇2

]
p(t, q, q′) = δ(t)δ(q − q′), (1)

where c is the speed of sound, p is the sound pressure, (q, q′)
being the listener and emitter location respectively, and δ
the Dirac delta representing the forcing function, where we
refer to sound pressure p(t; q, q′) as the impulse-response
observed at listener position q.

Given an accurate model of the impulse-response p(t; q, q′)
described in Eqn (1), we may model audio reverberation of
any sound waveform s(t) emitted at q′, by computing the
response r(t, q, q′) at listener location q by querying the
continuous field and using temporal convolution:

r(t; q, q′) = s(t) ~ p(t; q, q′) (2)

3.2. Neural Acoustic Fields

We are interested in constructing a continuous representa-
tion of the underlying acoustics of a scene, which may spec-
ify the reverberation patterns of an arbitrary sound source.
The parameterization of an impulse-response introduced in
Section 3.1 provides us with a method to model audio prop-
agation when given an omnidirectional listener and emitter.
To construct a model of a directional listener, we need to
further model the 3D head orientation θ ∈ R2, and ear
k ∈ {0, 1} (binary left or right) of a listener, in addition to
the spatial position q ∈ R3 of the listener and q′ ∈ R3 of
the emitter.

We may then model the time domain impulse response v
using a neural field Φ which takes as input the listener and
emitter parameters:

Φ : R8 × {0, 1} → RT

(q, θ, k, q′)→ Φ(q, θ, k, q′) = v (3)

Directly outputting the impulse-response v ∈ RT with a
neural network is difficult die to its high dimensional (over
20000 elements) and chaotic nature. A naı̈ve solution would
be further add t as an additional argument our neural field,
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(b) NAF impulse response STFT(a) Original impulse response STFT

(c) Anechoic audio

(d) Anechoic ⊛ NAF impulse  

(e) Anechoic ⊛ GT impulse  

Figure 3. Qualitative Visualization of Test Set Impulse Response Prediction. Example log-STFT of impulse responses and predictions
from NAF are shown in (a) and (b). (c) shows the log-STFT of an anechoic audio (without any reverberation). (d) The sound with a
reverberation impulse response from our NAF. (e) The sound with the ground truth reverberation impulse response applied.

but we found that such a solution worked poorly, due to
the highly non-smooth representation of the waveform (see
Table A2). We instead encode the impulse-response uti-
lizing a short-time Fourier transform (STFT) to create a
log-magnitude spectrogram denoted vSTFT, which we find
to be significantly more amenable to neural network predic-
tion, due to the smooth nature of the frequency space. In
Figure 3 we show spectrograms for ground truth impulse
responses and those learned by our network.

Thus, our parameterization of NAF is a neural field Ω that
is trained to estimate the impulse response function φ, and
outputs vSTFT for a given time and frequency coordinate:

Ω : R10 × {0, 1} → R
(q, θ, k, q′, t, f)→ Ω(q, θ, k, q′, t, f) ≈ vSTFT(t, f) (4)

We train our model using MSE loss between the generated
and ground truth log-spectrograms vSTFT:

LNAF = ‖Ω(q, θ, k, q′, t, f)− vSTFT(t, f)‖2 (5)
across spectrogram coordinates t and f .

The phase generally contains no correlation in a spatial
impulse response. We follow prior work in utilizing ran-
dom phase for waveform reconstruction with learned log-
magnitude spectrograms (Singh et al., 2021). Phase free
models are typical in spatial acoustic modeling utilizing
both handcrafted and learned approaches (Pulkki, 2007;
Raghuvanshi & Snyder, 2018; Singh et al., 2021).

3.3. Generalization through Local Geometric
Conditioning

We are interested in parameterizing the underlying acoustic
field, so that we may not only accurately represent impulse-
response at emitter-listener pairs we see during training, but
also at novel combinations of emitter and listener seen at
test time. Such generalization may be problematic when
directly parameterizing NAFs utilizing a MLP with inputs
specified in Eqn (4), as the network may learn to directly
overfit and entangle the relation between emitter and listener
impulse-responses.

What generic information may we extract from a given
impulse-response between an emitter and listener? In prin-

ciple, extracting the full dense geometric information in a
scene would enable us to robustly generalize to new emitter
and listener locations. However, the amount of geometric
information available in a particular impulse-response, espe-
cially for positions far away from either current emitter and
listener is limited, since these positions have little impact
on the underlying impulse-response. In contrast, the local
geometry near either emitter and listener positions will have
a strong influence in the impulse-response, as much of the
anisotropic reflection comes from such geometry (Paaso-
nen et al., 2017). Inspired by this observation, we aim to
capture and utilize local geometric information, near either
emitter or listener locations, as a means to predict impulse-
responses across novel combinations.

To parameterize and represent these local geometric features,
we learn a 2D grid of of spatial latents which we illustrate
in Figure 2. When predicting an impulse-response at a
given emitter and offset position, we query the learned grid
features at both emitter and listener positions, and provide
it as additional context into our NAF network Ω . Such
features provide rich information on the impulse-response,
enabling NAF to generalize better to unseen combinations
of both emitter and listener locations. In the rest of this
work, we refer to the NAFs with local geometric features
as Ωgrid. We learn grid latent features jointly with the
underlying parameters of NAF. Additional details can be
found in Appendix B.

Such a design choice, however, still requires us to consider
how to further combine local geometric information cap-
tured separately from either listeners or emitters. A naı̈ve
implementation would be to maintain separate feature grids
for both listener and emitter positions. Such an approach
fails to account for the fact that the local geometric informa-
tion captured by emitter may also inform the local geometric
information around a listener. Examining Eqn (1), we note
that it is in fact symmetric with respect to exchanging ei-
ther listener or emitter positions (Chaitanya et al., 2020),
indicating that the impulse-response does not change when
omnidirectional listener and emitters are swapped. Such a
result means that we may in fact utilize the local geometric
information captured near an emitter position interchange-
ably for either emitters and listeners. Thus, we propose our
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Figure 4. Qualitative Visualization of Neural Acoustic Fields. (a) Top down view of the rooms. (b) Results as inferred by our neural
acooustic field. Loudness of a sound given a emitter location indicated in red, lighter color indicates louder sound. Note how openings
and walls lead to portaling and occlusion of the sound respectively.

local geometric information as a single latent grid, which
we show to outperform the naı̈ve dual grid implementation.

4. Experiments
In this section, we demonstrate that our model can faithfully
represent the acoustic impulse response at seen and unseen
locations. Additional ablation studies verify the importance
of utilizing local geometric features to enable test time gen-
eration fidelity. Next, we demonstrate that learning acoustic
fields could facilitate improved visual representations when
training images are sparse. Finally we show that the learned
NAF can be used to infer scene structure.

4.1. Setup

For evaluating the learned acoustic fields, we use the
Soundspaces dataset (Chen et al., 2020). This dataset con-
sists of Ri probe points for each scene, with each probe
capable of representing an emitter or listener location for
up to R2

i emitter and listener pairs. The emitters are repre-
sented as omnidirectional, while the listener acts as a stereo
receiver that can have one of four different orientations. The
listeners and emitters are at fixed height. For each scene,
we holdout 10% of the RIRs randomly as a test set. Our
NAFs are trained on 6 representative scenes, selected such
that 2 consist of multi-room layouts, 2 consist a single room
with a non-rectangular walls, and 2 consist of a single room
with rectangular walls as in Figure 4. Each scene is trained
for 200 epochs, which takes around 12 hours for the largest
scenes on four Nvidia V100s. In each batch, we sample
20 impulse responses, and randomly select 2, 000 frequency
& time pairs within each spectrogram. An initial learning
rate of 5×10−4 is used for the network and the grid features.
We add a small amount of noise sampled from N (0, 0.1) to
each coordinate during training to prevent degenerate solu-
tions. We visualize the six scenes and the results as inferred
by our NAFs in Figure 4.

4.2. Architecture Details

The Soundspaces dataset lacks the full parameterization
of an acoustic field described in Equation 4, so we train
NAF with a restricted parameterization that is available
in the dataset. This allows for two degrees of freedom
along the x − y plane for the listener locations q ∈ R2

and the emitter location q′ ∈ R2. The listener can as-
sume four possible orientations θ ∈ {0, 90, 180, 270}, while
the emitter is omnidirectional. In particular, we utilize
a parameterization of Ωgrid which maps an input tuple
[x, y, x′, y′, f, t] ∈ R6 × {0, 90, 180, 270} × {0, 1} to a
single scalar value that represents the intensity for a given
time and frequency in the STFT:

Ωgrid(x, y, θ, k, x′, y′, t, f)⇒ vSTFT(t, f) (6)
To encode the rotation θ, as there are only 4 possible discrete
rotations in the dataset, we directly query into a learnable
embedding matrix of shape R4×k, returning a R1×k vector.
Similarily, to encode the left and right ear, we similarly
query into a learnable embedding matrix of shape R2×k,
returning a R1×k vector. The f, t tuple representing the
frequency and time respectively are scaled to (−1, 1) and
processed with sinusoidal encoding using 10 frequencies of
sin and cos. To obtain local geometric features for either a
emitter or listener in a scene, we assume that our scene is
contained within a set of pixels P = {P1...Pk} which form
a grid over the scene. For a given position tuple (x, y) as
query location, we then interpolate the local features. Where
L(·) is the interpolation function. (p∗1 . . . p

∗
k) are the set of

all pixel that form the grid, and f̃(·) represents the features
stored at a given pixel:

(x, y)⇒ L(x, y; f̃(p∗1), . . . f̃(p∗k)) (7)

=

k∑
i=0

wif̃(p∗i ) (8)

wi is determined by a Nadaraya-Watson estimator with a
gaussian weighting kernel applied to the distance between
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NAFs AAC-linearAAC-nearest Opus-linearOpus-nearestGT-nearest

Figure 5. Comparison of the acoustic fields. From left to right, we visualize the loudness maps generated by the full ground truth, our
NAFs, and by AAC or Opus coding combined with linear and nearest neighbor interpolation on the training set. Emitter location shown in
red. Our method can faithfully reproduce the loudness map present in the ground truth.

Large 1 Large 2 Medium 1 Medium 2 Small 1 Small 2 Mean

Model Spectral↓ T60↓ Spectral↓ T60↓ Spectral↓ T60↓ Spectral↓ T60↓ Spectral↓ T60↓ Spectral↓ T60↓ Spectral↓ T60↓

AAC-nearest 1.913 9.996 1.989 13.31 2.111 6.148 2.122 6.051 2.296 9.798 2.509 5.809 2.156 8.519
AAC-linear 1.904 8.847 1.964 11.63 2.105 4.585 2.116 4.422 2.299 8.253 2.521 6.021 2.151 7.293
Opus-nearest 1.740 12.20 1.817 15.15 1.887 7.875 1.898 7.897 2.058 10.68 2.238 7.564 1.940 10.23
Opus-linear 1.780 11.30 1.827 13.55 1.922 6.710 1.934 6.917 2.097 9.116 2.284 6.981 1.974 9.096

NAF (Dual) 0.415 3.286 0.422 4.001 0.386 2.729 0.387 2.446 0.364 2.758 0.371 2.578 0.391 2.966
NAF (Shared) 0.406 2.872 0.413 3.351 0.382 2.472 0.383 2.541 0.354 2.854 0.341 2.240 0.380 2.722

Table 1. Quantitative Results on Test Set Accuracy. We report the spectral loss between generated and ground truth log spectrograms
across methods, as well as the percentage (%) difference for the T60 reverberation time. The best method for each room is bolded. For
the nearest and linear baselines, we perform interpolation in the time domain using samples from the training set.

query and grid coordinates:

wi = K((x, y), (xi, yi))/

k∑
j=1

K((x, y), (xk, yk)) (9)

K(x,x′) = exp(−‖x− x′‖22/2σ2) (10)
Because this interpolation function is differentiable, we
jointly learn the grid features during training. These queried
features are combined with the coordinates processed with
sinusoidal encoding using 10 frequencies of sin and cos
functions. We process both the listener and emitter posi-
tion tuples this way. We combine the grid based features
with the sinusoidal embeddings and the discrete indexed
embeddings as the input to our multilayer perceptron fφ.
Please refer to Figure 2 for a visualization of our model,
and Appendix B for further details. We compare using a
shared local geometric feature with the emitter and listener,
as well as using have the emitter and listener query their
own individual grids.

4.3. Evaluation on neural acoustic fields

We first validate that we can capture environmental acoustics
at unseen emitter-listener positions.

Baselines. We compare our model against two widely used
high performance audio coding methods: Advanced Audio
Coding (AAC) and Xiph Opus. For each method, we apply
both linear and nearest neighbor interpolation to the coded
acoustic fields. Both linear and nearest neighbor approaches
are widely used (Savioja et al., 1999; Raghuvanshi et al.,
2010; Pörschmann et al., 2020) in modeling of spatial audio.
We also compare sharing and using individual local geo-
metric features in our NAFs. Each method is provided with

Method Storage (MiB)

AAC 346.74
Opus 181.37
NAF (Shared) 8.41

Table 2. Average space consumption across six scenes. Our
NAF can compactly encode the spatial acoustic field at a frac-
tion of the storage size.

the same train-test split. We visualize the acoustic fields
produced by each method in Figure 5. For additional details
please see section E of the appendix.

Results. We evaluate the results of our synthesis by mea-
suring the spectral loss (Défossez et al., 2018) between the
generated and the ground truth log-spectrograms, as well as
measuring the percentage error between the T60 reverber-
ation time in the time domain. In this case, lower spectral
loss and T60-error values indicates a better result. As shown
in Table 1, our NAFs achieve significantly higher quality
on the modeling of unseen impulse responses compared
to strong interpolation baselines. A comparison of using
shared and dual local geometric features indicates that de-
spite having fewer learnable parameters, we achieve better
performance by sharing the local geometric features. Ex-
amples of individual impulse responses generated by our
model are shown in Figure 3. Figures 4 shows the different
scenes and the loudness change predicted by our NAFs. The
size of a spatial acoustic field is important for real life ap-
plications. In Table 2 we show that on average our method
uses a magnitude less space than the baseline methods. Our
model is capable of predicting smoothly varying acoustic
fields that are affected by the physical surroundings.

Generalization through Geometric Conditioning. We
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Large Room 1 Large Room 2

PSNR ↑ MSE ↓ PSNR ↑ MSE ↓
Training Images 75 100 150 75 100 150 75 100 150 75 100 150

NeRF 25.41 27.36 29.85 6.618 3.506 1.740 25.70 27.74 29.34 6.921 3.905 2.185
NeRF + NAF 26.19 27.59 29.90 5.209 2.983 1.625 26.24 28.22 29.45 5.641 3.075 2.034

Table 3. Quantitative Results on Cross-Modal Image Learning. Quantitative results on joint training of NeRF and NAF jointly
conditioned on a single local grid. We use very sparse training images in highly complex scenes. When evaluated on 50 test images, we
observe that cross-modal learning helps improve PSNR when the visual training data is more sparse. MSE results are multiplied by 103.

Figure 6. Local Geometric Conditioning. Comparison of NAF
with and without local geometric conditioning trained with differ-
ent amounts of data.

next assess the impact of utilizing local geometric condi-
tioning as a means to generalize to novel combinations of
emitter-listener positions. On the ”Large 1” room, in Fig-
ure 6 we evaluate test set spectral error when NAF is trained
with a limited percentage of the training data either with
or without local geometric conditioning. We find that such
geometric conditioning enables better test set reconstruction
error, with the performance gap increasing with less data.

4.4. Cross-modal learning
In this experiment, we explore the effect of jointly learn-
ing acoustics and visual information when we are given
sparse visual information. Recall that our NAF includes a
local geometric feature grid P that covers the entire scene.
For our cross-modal learning experiment, we jointly learn
this feature grid with a NeRF network modified to accept
both local features along with the traditional sinusoidal em-
bedding. In the acoustics branch, we query the grid using
emitter and listener positions. In the NeRF branch, we use
point samples along the ray projected on the grid plane to
query the features. In both cases, the process is fully dif-
ferentiable. We use a standard implementation of NeRF
with a coarse and fine network. In both the cross-modal
and RGB only experiments we augment the fine network
with a learnable local feature grid. In the NeRF only setting,
we minimize color C reconstruction loss for a ray r over a
batch of raysR: LRGB =

∑
r∈R ||Ĉ(r)− C(r)||22. In con-

trast, in the NAF + NeRF experiment, we jointly minimize
LRGB + LNAF, where LNAF is defined in equation 5. We
utilize 64 coarse samples and 128 fine samples for each ray,
and sample 1024 rays per batch.

Large 1 Large 2
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Figure 7. Qualitative Visualization of Cross-Modal Image
Learning. Qualitative comparison between NeRF learned jointly
with a NAF with RGB and acoustic supervision, and NeRF learned
with only RGB supervision. We observe fewer floating artifacts
when jointly training with audio. (a)-(c) Three views from ”Large
1”. (d)-(f) Three views from ”Large 2”.

Results. We train on the two large rooms in our training set.
For each room 75, 100, 150 images are used for training,
while the same 50 images of novel views are used for all
configurations during testing. In Table 3 we observe that
training with acoustic information helps improve the PSNR
and MSE of the visual output. This effect is more signif-
icant when the training images are very sparse, the NAF
network helps less when there is sufficient visual informa-
tion. Qualitative results are shown in Figure 7, we see there
is a reduction of floaters in free space.

4.5. Inferring scene structure

Given a reverberant sound, humans are able to build a mental
representation of the surrounding room and make a judge-
ment about the distance of nearby obstacles (Kolarik et al.,
2016). We investigate the intermediate representations con-
structed by our neural network in the process of learning an
acoustic field, and examine if these representations can be
used to decode the scene structure.

Setup. The intermediate representation of the NAF depends
on both listener locations q and emitter location q′, the
rotation angle θ, the ear k, the time t and frequency f .
For consistency, at a given location (x∗, y∗) in the scene,
we extract the NAF latent by setting the emitter location
q′i = (x∗, y∗)i. For the listener location, we iterate over
five randomly selected points in the scene q ∈ [q1, . . . , q5],
which we keep constant for all q′i. The rotation angle is fixed
to θ = 0, and we compute the representation average over all
possible (k, t, f), and concatenate latents for the selected q.
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Explained variance

Features Large 1 Large 2 Medium 1 Medium 2 Small 1 Small 2 Mean

MFCC 0.501 0.458 0.614 0.642 0.820 0.723 0.626
NAF latents 0.908 0.891 0.900 0.923 0.936 0.916 0.913

Table 4. Quantitative Results on scene structure decoding. We measure the explained variance scores of the predicted wall distance
against the ground truth wall distance at test time locations after linear decoding. NAF latents consistently achieve higher explained
variance scores than MFCC features.
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Figure 8. Qualitative Visualization of scene structure decoding
with a linear layer. Top: The ground truth scene structure map, at
each position we visualize the distance to the nearest wall. Middle:
Linear decoding results using MFCC features. Bottom: Linear
decoding results using NAF features.

Large 1 Large 2 Medium 1

Figure 9. Visualization of NAF latents. We apply TSNE to re-
duce the dimensionality of the NAF latents. The latents learned by
our NAF exhibit clear structure.

For our NAFs, latents are extracted from the last layer prior
to the output which includes 512 neurons. As a comparison
to our learned representation, we extract Mel-frequency
cepstral coefficients (MFCCs) from the ground truth impulse
response provided by a nearest neighbor interpolator. We
use a similar setup as above, for a given location we set
this to be q′i, and iterate over the same five listener locations
q1...5. We average the MFCCs over the left and right ear,
and concatenate for the selected q. After flattening, the
MFCC features are approximately 500 dimensional for any
given room.

We fit a single linear layer to NAF and MFCC features
respectively. For testing and visualization of the linear de-
coding results, we sample a regular grid of points with 0.1m
distance between each point. For fitting the linear decoder,
we randomly sample points within the scene such that the
number of training points are 10% as many as the testing
points. For each location in the scene, we extract the dis-

tance to the nearest wall as the decoding target.

Results. We visualize the results of our linear decoding in
Figure 8. As shown in Figure 9, the intermediate represen-
tation of our NAFs reveals an underlying structure that is
both smooth and semantically meaningful. In the multiroom
scenes, the latent is well separated for each room. We are
able to successfully decode the scene structure with a lin-
ear layer when using our NAFs, but decoding fails when
using MFCC features. In Table 4, we show the amount of
explained variance of our decoding results on the test set.
Our learned features are able to consistently achieve much
higher scores than those using MFCC features.

5. Limitations and Future Work
In this work, we provide the first exploration into learning
an implicit function that represents the underlying spatial
acoustic field. Our model can generalize to continuous
locations after training, and provides learned representations
that are useful for audio-visual tasks and understanding
scene structure.

However our model still has limitations. In line with prior
spatial acoustic field coding work, our approach does not
model the phase. While a magnitude only approximation
may still model plausible spatial acoustic effects in a com-
pact and continuous fashion, such a representation may
not be sufficient for tasks that depend on the phase (E.g.
phase based microphone array direction-of-arrival estima-
tion). Progress on learned approaches for waveform recov-
ery (Oord et al., 2016; Kalchbrenner et al., 2018), offer some
promise for joint modeling of magnitude and phase. These
approaches are orthogonal to our work, and we leave this
exploration to a future study. Also similar to prior acoustic
field work, our NAFs requires a precomputed acoustic field.
While this is not a limitation for many applications, the
ability to generalize from extremely sparse training samples
could open up new potential use cases. Finally, like other
prior work that utilize implicit neural representations, our
NAFs are fit to a specific scene. The ability to predict the
acoustic field of novel scenes remains an open question.

6. Conclusion
In summary, this paper introduces Neural Acoustic Fields
(NAFs), a compact, continuous, and differentiable acoustic
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representation which can represent the underlying reverber-
ation of different audio sources in a scene. By conditioning
NAFs locally on the underlying scene geometry, we demon-
strate that our approach enables the prediction of plausible
environmental reverberations even at unseen locations in the
scene. Furthermore, we demonstrate that the acoustic repre-
sentations learned through NAFs are powerful, and may be
utilized to facilitate audio-visual cross-modal learning, as
well as to infer the structure of scenes.
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Appendix

A. Additional Visualization of Rooms

Figure A1. Additional Qualitative Predictions of NAF. Qualitative visualization of the loudness map as predicted by NAF across four
different rooms.

We show additional NAF predictions of loudness as we move an emitter inside different rooms in Figure A1. For each room,
note how the sound is affected by the geometry. In wide open spaces the sound is highly dispersed. While in thin structures
the sound tends to concentrate locally. As we move farther from the source, the loudness of the sound decreases.
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B. Architecture and Training Details
We visualize the two alternative models that we experiment with, in Figure A2 is a network that uses different local feature
grids for the emitter and receiver. The network uses the emitter and listener positions to sample from the two different grids.

In Figure A3 we show a model that does not utilize any kind of local geometry conditioning. The listener, emitter, phase, and
time input are transformed using sinusoidal embedding, while the orientation and left/right are retrieved. All transformed
inputs are directly fed to the network.
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Figure A2. Architecture of the model that uses emitter and listener specific local geometry conditioning.
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Figure A3. Architecture of the model that uses no local geometry conditioning.

Each network consists of 8 fully connected layers in a feedforward fashion, as well as a skip connection consisting of two
fully connected layers. The skip connection takes the input and adds its output to that for the fourth intermediate layer.
We utilize an intermediate feature size of 512, and Leaky ReLU with a slope of 0.1 as the activation function. The grid is
initialized to stretch the bounding box of a scene. Each point is located at a distance of 0.25m from the nearest neighbor. 64
features are used for each point. Each element of the grid is initialized i.i.d. from N (0, 1√

64
). We initialize the bandwidth

for each point at σ = 0.25, and jointly train the bandwidth as part of the network. For the network and the grid, we utilize an
initial learning rate of 5e− 4. The Adam optimizer is used when training our network. We utilize a orientation embedding
of shapeR7×4×512 where 7 is the number of intermediate outputs, 4 is the number of orientations, and 512 is the feature
dimension. For the left-right embedding, we use a shape ofR7×2×512. We perform additive conditioning by adding aR512

vector to each intermediate output for both the orientation and the left/right.

For each scene, to generate a log-spectrogram for each impulse response, we compute the mean and standard deviation
µ(f,t), σ(f,t) for each frequency/time index in the log-spectrogram, and normalize the data prior to training:

v(f,t) =
v(f,t) − µ(f,t)

3.0× σ(f,t)

For the sinusoidal embedding, we utilize both cos and sin with 10 frequencies each for encoding position, phase, and
time. For encoding position we utilize a max frequency of 27Hz, while for encoding time and frequency we utilize a max
frequency of 210Hz.
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Since we do not know beforehand the time duration of an impulse response at an unseen location, we compute the maximum
impulse length for each scene and use this length to zero pad the training impulse responses. Because the padded regions do
not contain useful information, we want the network to focus modeling efforts on the early regions of the impulse response.
We achieve this by stochastically padding the impulse response to maximum impulse length with 0.1 probability. Because
the implicit function is trained on individual (t, f) coordinates within a given vSTFT, training samples do not need to be of
the same length. During test time, we perform inference up to the maximum duration of scene impulse response.

C. Dataset Visualization

(a) (b)

Figure A4. A room the emitter-listener probes. (a) The 3D structure of a room. b The probes marking the location of emitters/listeners.

In Figure A4, we visualize both the room and underlying set of probe positions in the training data. Due to occlusion and the
geometry, even slightly moving the emitter or listener position can result in different results. As we demonstrated in Table 7,
both nearest neighbor and linear interpolation perform poorly compared to our learned solution. In contrast, recovered
acoustic fields from NAF trained on these probe positions is substantially denser (Figure A1).

D. Storage Comparison

Storage (MiB)
Method Large 1 Large 2 Medium 1 Medium 2 Small 1 Small 2 Mean
AAC 495.97 478.55 483.42 451.14 116.75 54.64 346.74
Opus 258.51 257.08 245.65 231.06 66.15 29.75 181.37
NAF (Dual) 8.78 8.87 8.87 8.92 8.45 8.37 8.71
NAF (Shared) 8.44 8.49 8.49 8.51 8.28 8.23 8.41

Table A1. Storage cost of different methods. We average the amount of data required for different methods of inference for the six
scenes. Our NAFs are able to compactly represent the scene while maintaining higher quality.

We compare the averaged on disk storage cost of the different methods for inferring the spatial audio using a precomputed
training set in Table A1. Both linear and nearest interpolation methods require access to the entire training set, while our
NAF based approaches compactly encode the acoustic scene.
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E. Details of the compression baselines
If uncompressed, the precomputed spatial acoustic field can reach gigabyte or terabyte sizes depending on probe density,
scene size, and bandwidth of the impulse. When applied to gaming and virtual reality applications, minimizing the space
taken up by these acoustic representations is critical and have been widely studied.

We utilize two state-of-the-art lossy coding methods applied to the audio. They are respectively Advanced Audio Coding
(AAC-LC) and Xiph Opus. These two methods were chosen because they are in widespread usage for media encoding, are
among the best coding methods for a given bitrate, and have high quality open-source implementations available.

We describe the parameters and additional details for these two coding methods.

E.1. AAC baseline

We utilize ffmpeg 5.0, and select the open source ”aac” implementation. We set the combined stereo bitrate to 24 kBit/s
in constant bit rate mode, as we found that there are occasional encode/decode failures below this bitrate.

E.2. Opus baseline

We utilize opustools 0.2 backed by libopus 1.3.1. The encoder is set to 12kBit/s for stereo (6kBit/s per channel)
in constrained variable bitrate mode. Complexity it set to the maximum of 10, and music mode is set (as opposed to speech
tuning mode).

F. Alternative Neural Representations

Representation Spectral loss ↓ T60↓
Time domain 2.046 49.72
Magnitude + phase 0.427 5.694
Magnitude only 0.406 2.872

Table A2. Learning different representations We compare learning magnitude only, jointly learning magnitude and phase, as well as
directly learning in the time domain. For the magnitude + phase, we allow the network to fit the instantaneous frequency, a representation
that is believed to be easier for networks to learn.

Our current method follows prior work in learning in the log-magnitude STFT domain. In this section, we investigate two
possible alternatives: learning phase + log-magnitude, and directly learning in the time domain. The MSE and T60 error
percentage is presented in Table A2. We observe that jointly modeling phase + log-magnitude degrades the performance
slightly compared to modeling just the log-magnitude, while modeling in the time domain performs poorly.

G. L2 regularized grid in NeRF

Large 1 Large 2
PSNR ↑ MSE ↓ PSNR ↑ MSE ↓

NeRF + grid + L2 22.69 6.956 24.86 7.128
NeRF + grid 25.41 6.618 25.70 6.921

Table A3. Regularizing the grid. In this experiment, we compare learning NeRF with a grid without regularization, and with L2

regularization.

In Table A3 we compare NeRF that utilizes a grid and trained using image reconstruction loss, against a variant where a L2

penalty with weight 1e− 5 to ensure a smooth latent space is added to the image reconstruction loss. There are 75 images
used in the training set. We observe degraded performance when we apply this penalty. This indicates that our NAFs are
providing more information than simple regularization to ensure a smooth latent grid.


